Integration by substitution

illustrating integration by substitution by replacing u for x-1

Page Contents

In Calculus, Integration by substitution is when we replace an integral value or its parts in an attempt to make the expression easier to integrate.

Consider the function f(u) such that u is a function of x.

let u = f(x) and f(u)=u

ddxf(u)=dudxf′(u)ddxf(u)=dudxf′(u)

where:

f′(u)=df(u)duf′(u)=df(u)du

Integrating….;

∫dudxf′(u)dx=∫ddxf(u)dx=f(u)+C∫dudxf′(u)dx=∫ddxf(u)dx=f(u)+C

but:

f′(u)=df(u)duf′(u)=df(u)du

so that

∫f′(u)du=f(u)+c∫f′(u)du=f(u)+c

∫dudxf′(u)dx=∫f′(u)du=f(u)+C∫dudxf′(u)dx=∫f′(u)du=f(u)+C

Example 1

Solve the problem below using Integration by substitution:

∫x2√x3+5∫x2x3+5

solution

substitute the expression under the root sign as shown:

let

u=x3+5u=x3+5

then integrating u with respect to x we get:

dudx=3x2dudx=3×2

and so:

du=3x2dxdu=3x2dx

and making dx the subject:

dx=du3x2dx=du3x2

rewriting the expression:

∫x2√x3+5=∫x2√udu3x2∫x2x3+5=∫x2udu3x2

x2 on the numerator can then be cancelled out by the x2 on the denominator.

The expression becomes:

∫√Udu3x2=∫u123du∫Udu3x2=∫u123du

=

=13∫U12du=13∫U12du

13.U3232+C=2U329+C13.U3232+C=2U329+C

13.U3232+C=2U329+C=29(x3+5)32+C13.U3232+C=2U329+C=29(x3+5)32+C


Example 2

solve :

∫2x√1+x2dx∫2×1+x2dx

solution

let u = 1 +x2

then differentiating u with respect to x

dudx=2ududx=2u

and then rearranging:

dx=du2xdx=du2x

then rewriting the integral:

∫2x√udu2x=∫√udu∫2xudu2x=∫udu

2x on the denominator has cancelled the 2x on the numerator so that we only have u that is easy to integrate:

∫√udu=∫u−12du=[u3232+C]∫udu=∫u−12du=[u3232+C]

=2u323+C=2(1+x2)323+C=2u323+C=2(1+x2)323+C

Example

solve by substitution:

∫1√2x+1dx∫12x+1dx

solution

let u = 2x + 1

differentiating u with respect to x we obtain;

dudx=2dudx=2

now we express dx in terms of u as:

du=dx2du=dx2

Then we need to rewrite our integral as:

∫1u12du2=12∫u−12du∫1u12du2=12∫u−12du

then:

∫u−12du=12[u1212]+C∫u−12du=12[u1212]+C

=U12+C=U12+C

rem U = 2x + 1

and any number raised to power of 1/2 is like finding it’s squareroot

hence:

U12+C=√2x+1+CU12+C=2x+1+C

substitution Problem involving trigonometric ratios

solve:

∫cosxsin3xdx∫cosxsin3xdx

solution:

let u = sin x: then

dudx=cosxdudx=cosx

dx=ducosxdx=ducosx

and applying substitution in our integral, we replace dx;

∫cosxsin3xdx=∫cosx.u3ducosx∫cosxsin3xdx=∫cosx.u3ducosx

cos x in the numerator cancels the one at the denominator that the expression is reduced to:

∫u3du∫u3du

∫u3du=U44+C∫u3du=U44+C

but u = sin x; therefore:

U44+C=sin4x4+CU44+C=sin4x4+C

generally:

∫cosxsinxxdx=1n+1sinn+1+C∫cosxsinxxdx=1n+1sinn+1+C

Example on trigonometric substitution

solve:

∫sinxcos5xdx∫sinxcos5xdx

solution

let u = cos x

du=−sinxdxdu=−sinxdx

du−sinx=dxdu−sinx=dx

rewriting dx in our original integral:

∫sinxcos5xdx=∫sinxcos5xdu−sinx∫sinxcos5xdx=∫sinxcos5xdu−sinx

we eliminate sin x in the integral to obtain the following expression:

=∫−cos5xdu=∫−cos5xdu

but cos x = u

hence cos5x = u5 and so the integral becomes:

−∫u5du−∫u5du

hence we get:

−∫u5du=−u66+6−∫u5du=−u66+6

and then replacing u for cos x we get:

−cos6x6+C−cos6x6+C

in general:

∫sinxcosnxdx=−1n+1cosn+1x+C∫sinxcosnxdx=−1n+1cosn+1x+C

Integration by substitution: natural log by substitution

solve:

∫lnxxdx∫lnxxdx

solution

let u = lnx

dudx=1xdudx=1x

x du = dx

hence we write the integral as:

∫lnxxdx=∫lnxxxdu∫lnxxdx=∫lnxxxdu

and so we eliminate x to have the integral:

∫lnxdu=∫udu∫lnxdu=∫udu

∫udu=u22+C=(lnx)22+C∫udu=u22+C=(lnx)22+C

Example on sec trigonometric ration

solve:

∫sec2(3x−1)dx∫sec2(3x−1)dx

solution

let u = 3x-1

dudx=3dudx=3

du = 3dx

dx=du3dx=du3

∫sec2udu3=13∫sec2udu=13tanu+c=13tan(3x−1)+C∫sec2udu3=13∫sec2udu=13tanu+c=13tan(3x−1)+C

Example 3 on trigonometric ratio

integrate:

∫sinxecosxdx∫sinxecosxdx

solution

let u = cos x

du=−sinxdxdu=−sinxdx

dx=du−sinxdx=du−sinx

=∫sinxeudu−sinx=−∫eudu=−eu+c=∫sinxeudu−sinx=−∫eudu=−eu+c

Practice exercise

use the substitution method to evaluate the following integrals:

1.∫x(x2−3)4dx∫x(x2−3)4dx

2.∫x√1−x2dx∫x1−x2dx

3.∫cos2x(sin(2x+3))2dx∫cos2x(sin(2x+3))2dx

4.∫ex√1+exdx∫ex1+exdx

5.∫sec2xtan2xdx∫sec2xtan2xdx

6.∫√x√1+x32dx∫x1+x32dx

7.∫(x+1)sin(x2+2x+2)dx∫(x+1)sin(x2+2x+2)dx

8.∫(x+1)√x2+2x+3dx∫(x+1)x2+2x+3dx

9.∫x2(x3+8)4dx∫x2(x3+8)4dx

Related Topics