Tag: Integration by substitution

  • Integration by substitution

    Integration by substitution

    illustrating integration by substitution by replacing u for x-1

    Page Contents

    In Calculus, Integration by substitution is when we replace an integral value or its parts in an attempt to make the expression easier to integrate.

    Consider the function f(u) such that u is a function of x.

    let u = f(x) and f(u)=u

    ddxf(u)=dudxf′(u)ddxf(u)=dudxf′(u)

    where:

    f′(u)=df(u)duf′(u)=df(u)du

    Integrating….;

    ∫dudxf′(u)dx=∫ddxf(u)dx=f(u)+C∫dudxf′(u)dx=∫ddxf(u)dx=f(u)+C

    but:

    f′(u)=df(u)duf′(u)=df(u)du

    so that

    ∫f′(u)du=f(u)+c∫f′(u)du=f(u)+c

    ∫dudxf′(u)dx=∫f′(u)du=f(u)+C∫dudxf′(u)dx=∫f′(u)du=f(u)+C

    Example 1

    Solve the problem below using Integration by substitution:

    ∫x2√x3+5∫x2x3+5

    solution

    substitute the expression under the root sign as shown:

    let

    u=x3+5u=x3+5

    then integrating u with respect to x we get:

    dudx=3x2dudx=3×2

    and so:

    du=3x2dxdu=3x2dx

    and making dx the subject:

    dx=du3x2dx=du3x2

    rewriting the expression:

    ∫x2√x3+5=∫x2√udu3x2∫x2x3+5=∫x2udu3x2

    x2 on the numerator can then be cancelled out by the x2 on the denominator.

    The expression becomes:

    ∫√Udu3x2=∫u123du∫Udu3x2=∫u123du

    =

    =13∫U12du=13∫U12du

    13.U3232+C=2U329+C13.U3232+C=2U329+C

    13.U3232+C=2U329+C=29(x3+5)32+C13.U3232+C=2U329+C=29(x3+5)32+C


    Example 2

    solve :

    ∫2x√1+x2dx∫2×1+x2dx

    solution

    let u = 1 +x2

    then differentiating u with respect to x

    dudx=2ududx=2u

    and then rearranging:

    dx=du2xdx=du2x

    then rewriting the integral:

    ∫2x√udu2x=∫√udu∫2xudu2x=∫udu

    2x on the denominator has cancelled the 2x on the numerator so that we only have u that is easy to integrate:

    ∫√udu=∫u−12du=[u3232+C]∫udu=∫u−12du=[u3232+C]

    =2u323+C=2(1+x2)323+C=2u323+C=2(1+x2)323+C

    Example

    solve by substitution:

    ∫1√2x+1dx∫12x+1dx

    solution

    let u = 2x + 1

    differentiating u with respect to x we obtain;

    dudx=2dudx=2

    now we express dx in terms of u as:

    du=dx2du=dx2

    Then we need to rewrite our integral as:

    ∫1u12du2=12∫u−12du∫1u12du2=12∫u−12du

    then:

    ∫u−12du=12[u1212]+C∫u−12du=12[u1212]+C

    =U12+C=U12+C

    rem U = 2x + 1

    and any number raised to power of 1/2 is like finding it’s squareroot

    hence:

    U12+C=√2x+1+CU12+C=2x+1+C

    substitution Problem involving trigonometric ratios

    solve:

    ∫cosxsin3xdx∫cosxsin3xdx

    solution:

    let u = sin x: then

    dudx=cosxdudx=cosx

    dx=ducosxdx=ducosx

    and applying substitution in our integral, we replace dx;

    ∫cosxsin3xdx=∫cosx.u3ducosx∫cosxsin3xdx=∫cosx.u3ducosx

    cos x in the numerator cancels the one at the denominator that the expression is reduced to:

    ∫u3du∫u3du

    ∫u3du=U44+C∫u3du=U44+C

    but u = sin x; therefore:

    U44+C=sin4x4+CU44+C=sin4x4+C

    generally:

    ∫cosxsinxxdx=1n+1sinn+1+C∫cosxsinxxdx=1n+1sinn+1+C

    Example on trigonometric substitution

    solve:

    ∫sinxcos5xdx∫sinxcos5xdx

    solution

    let u = cos x

    du=−sinxdxdu=−sinxdx

    du−sinx=dxdu−sinx=dx

    rewriting dx in our original integral:

    ∫sinxcos5xdx=∫sinxcos5xdu−sinx∫sinxcos5xdx=∫sinxcos5xdu−sinx

    we eliminate sin x in the integral to obtain the following expression:

    =∫−cos5xdu=∫−cos5xdu

    but cos x = u

    hence cos5x = u5 and so the integral becomes:

    −∫u5du−∫u5du

    hence we get:

    −∫u5du=−u66+6−∫u5du=−u66+6

    and then replacing u for cos x we get:

    −cos6x6+C−cos6x6+C

    in general:

    ∫sinxcosnxdx=−1n+1cosn+1x+C∫sinxcosnxdx=−1n+1cosn+1x+C

    Integration by substitution: natural log by substitution

    solve:

    ∫lnxxdx∫lnxxdx

    solution

    let u = lnx

    dudx=1xdudx=1x

    x du = dx

    hence we write the integral as:

    ∫lnxxdx=∫lnxxxdu∫lnxxdx=∫lnxxxdu

    and so we eliminate x to have the integral:

    ∫lnxdu=∫udu∫lnxdu=∫udu

    ∫udu=u22+C=(lnx)22+C∫udu=u22+C=(lnx)22+C

    Example on sec trigonometric ration

    solve:

    ∫sec2(3x−1)dx∫sec2(3x−1)dx

    solution

    let u = 3x-1

    dudx=3dudx=3

    du = 3dx

    dx=du3dx=du3

    ∫sec2udu3=13∫sec2udu=13tanu+c=13tan(3x−1)+C∫sec2udu3=13∫sec2udu=13tanu+c=13tan(3x−1)+C

    Example 3 on trigonometric ratio

    integrate:

    ∫sinxecosxdx∫sinxecosxdx

    solution

    let u = cos x

    du=−sinxdxdu=−sinxdx

    dx=du−sinxdx=du−sinx

    =∫sinxeudu−sinx=−∫eudu=−eu+c=∫sinxeudu−sinx=−∫eudu=−eu+c

    Practice exercise

    use the substitution method to evaluate the following integrals:

    1.∫x(x2−3)4dx∫x(x2−3)4dx

    2.∫x√1−x2dx∫x1−x2dx

    3.∫cos2x(sin(2x+3))2dx∫cos2x(sin(2x+3))2dx

    4.∫ex√1+exdx∫ex1+exdx

    5.∫sec2xtan2xdx∫sec2xtan2xdx

    6.∫√x√1+x32dx∫x1+x32dx

    7.∫(x+1)sin(x2+2x+2)dx∫(x+1)sin(x2+2x+2)dx

    8.∫(x+1)√x2+2x+3dx∫(x+1)x2+2x+3dx

    9.∫x2(x3+8)4dx∫x2(x3+8)4dx

    Related Topics